Skip to main content

CR computed Radiography

CR Computed radiography (CR) is the digital replacement of conventional X-ray film radiography and offers enormous advantages for inspection tasks – the use of consumables is virtually eliminated and the time to produce an image is drastically shortened.

How exactly does CR technology work?

In computed radiography, when imaging plates are exposed to X-rays or gamma rays, the energy of the incoming radiation is stored in a special phosphor layer. A specialized machine known as a scanner is then used to read out the latent image from the plate by stimulating it with a very finely focused laser beam. When stimulated, the plate emits blue light with intensity proportional to the amount of radiation received during the exposure. The light is then detected by a highly sensitive analog device known as a photomultiplier (PMT) and converted to a digital signal using an analog-to-digital converter (ADC). The generated digital X-ray image can then be viewed on a computer monitor and evaluated. After an imaging plate is read, it is erased by a high-intensity light source and can immediately be re-used - imaging plates can typically be used up to 1000 times or more depending on the application.

Medical applications

Computed Radiography systems are the most common in medical applications because they have proven reliability over more than two decades, flexibility to address a variety of clinical applications and lower costs to take multiple exam rooms digital. DR in the form of a portable detector starts at around $150,000.00, while a basic low volume CR can start as low as $30,000.00 (but higher volume, hospital-grade applications can be higher.) DR systems are generally sold as a full x-ray room replacements and tied to a single x-ray generator. CR IPs can be retrofitted to existing exam rooms and used in multiple x-ray sites since IPs are processed through a CR reader (scanner) that can be shared between multiple exam rooms.

Advantages

  • No silver based film or chemicals are required to process film.
  • Reduced film storage costs because images can be stored digitally.
  • Computed radiography often requires fewer retakes due to under- or over-exposure which results in lower overall dose to the patient.
  • Image acquisition is much faster - image previews can be available in less than 15 seconds.
  • By adjusting image brightness and/or contrast, a wide range of thicknesses may be examined in one exposure, unlike conventional film based radiography, which may require a different exposure or multiple film speeds in one exposure to cover wide thickness range in a component.
  • Images can be enhanced digitally to aid in interpretation.
  • Images can be stored on disk or transmitted for off-site review.
  • Ever growing technology makes the CR more affordable than ever today. With Chemicals, dark room storage and staff to organize them, you could own a CR for the same monthly cost while being environmentally conscious, depending upon the size of the Radiographic Operation.

Disadvantages

  • In medical applications, manual handling of the cassette housing the IP is considered a disadvantage versus DR but it also offers more flexibility for patient positioning.
  • CR is still not an approved method for higher quality radiologic applications (aerospace), due to the possibility of digital manipulation to the captured image, the inherent geometric unsharpness and resultant lower spatial resolution as compared to film (radiographic) images, SNR (signal vs. noise)issues and sensitivity to scattered radiation, and the general lack of procedural consensus among primes and OEM's.
  • There also are no quality (image resolution)standards for general radiography, only for mammography (21 CFR 900.12 (e)), however, competition among manufacturers has raised the bar and newer CR technologies with increased detective quantum efficiency (DQE) and higher spatial resolution have emerged.

Comments

Popular posts

Orthopantomograhm OPG

OPG The orthopantomogram (also known as an orthopantomograph, panotomogram or an OPG) is a panoramic single image radiograph of the mandible, maxilla and teeth. It is often OPG encountered in dental practice and occasionally in the emergency department; providing a convenient, inexpensive and rapid way to evaluate the gross anatomy of the jaws and related pathology. Patient position During an OPG the patient remains in a stationary position (seated or standing) while both the x-ray source and film rotate in combination around the patient. The x-ray source rotates from one side of the jaw, around the front of the patient, and then to the other side of the jaw. The film rotates opposite to the x-ray source behind the patient. It takes a few seconds during which the patient must remain completely still. Technical factors panoramic projection paused respiration (departmentally dependent) centering point Frankfort's horizontal line is perpendicular to the f

Fluoroscopy

Fluoroscopy- Fluoroscopy is a type of medical imaging that shows a continuous X-ray image on a monitor, much like an X-ray movie. During a fluoroscopy procedure, an X-ray beam is passed through the body. The image is transmitted to a monitor so the movement of a body part or of an instrument or contrast agent (“X-ray dye”) through the body can be seen in detail. Benefits/Risks Fluoroscopy is used in a wide variety of examinations and procedures to diagnose or treat patients. Some examples are: Barium X-rays and enemas (to view the gastrointestinal tract) Catheter insertion and manipulation (to direct the movement of a catheter through blood vessels, bile ducts or the urinary system) Placement of devices within the body, such as stents (to open narrowed or blocked blood vessels) Angiograms (to visualize blood vessels and organs) Orthopedic surgery (to guide joint replacements and treatment of fractures) Fluoroscopy carries some risks, as do other X-ray procedures. The

Cobalt 60 machine

Cobalt 60 is produced in a nuclear reactor by bombarding  59 Co with neutrons. It has a half life of 5.3 years and decays by negative beta emission to metastable  60 Ni. This rapidly releases a gamma ray of either 1.17 or 1.33 MeV to reach a stable state. The source typically has an activity of 185 – 370 MBq, giving a dose rate at 80 cm of 1 – 2 Gy/minute. The Cobalt 60 source is usually replaced before a single half life has elapsed. Gamma ray treatment machines are known as teletherapy units. The components of a cobalt-60 machine are: A radioactive source, in this case  60 Co, which is housed in a steel capsule. Source housing, which includes the primary beam collimator to prevent unwanted radiation emission. The source housing can also shift the source to allow gamma rays to exit the unit through the collimator aperture. A gantry (in isocentric machines) to allow the source to rotate around a fixed position. The SAD is usually 80 or 100 cm. The gantry is typically attached

Ultrasound scan

What is an ultrasound? An ultrasound scan is a medical test that uses high-frequency sound waves to capture live images from the inside of your body. It’s also known as sonography. The technology is similar to that used by sonar and radar, which help the military detect planes and ships. An ultrasound allows your doctor to see problems with organs, vessels, and tissues without needing to make an incision. Unlike other imaging techniques, ultrasound uses no radiation. For this reason, it’s the preferred method for viewing a developing fetus during pregnancy. Why an ultrasound is performed Most people associate ultrasound scans with pregnancy. These scans can provide an expectant mother with the first view of her unborn child. However, the test has many other uses. Your doctor may order an ultrasound if you’re having pain, swelling, or other symptoms that require an internal view of your organs. An ultrasound can provide a view of the: bladder brain (in infants) eyes

Ct scan

  A computed tomography (CT or CAT) scan allows doctors to see inside your body. It uses a combination of X-rays and a computer to create pictures of your organs, bones, and other tissues. It shows more detail than a regular X-ray. You can get a  CT scan  on any part of your body. The procedure doesn't take very long, and it's painless. How Do CT Scans Work? They use a narrow X-ray beam that circles around one part of your body. This provides a series of images from many different angles. A computer uses this information to create a cross-sectional picture. Like one piece in a loaf of bread, this two-dimensional (2D) scan shows a “slice” of the inside of your body. This process is repeated to produce a number of slices. The computer stacks these scans one on top of the other to create a detailed image of your organs, bones, or  blood  vessels. For example, a surgeon may use this type of scan to look at all sides of a tumor to prepare for an operation. How Are C